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Abstract: Two dynamic models of muscle activation and deactivation based on the 

concepts of ion transport, reaction rates, and muscle mechanics are proposed. Storage 

release and uptake of calcium by the sarcoplasmic reticulum, and a two-step chemical 

reaction of calcium and troponin are included in the first model. This is a concise version 

of the complex chemical reactions of muscle activation and deactivation in sarcoplasm. The 

second model is similar to the first, but calcium-troponin reactions are simplified into two 

nonlinear rates functions. Due to these nonlinear dynamics, the second model can explain 

the catch-like enhancement of isometric force response. Simulation results which match 

experimental data are shown. Also, two new phenomena which need further experiment to 
verify are predicted by the second model. 
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Introduction 

Many attempts have been made to understand the processes by which the nervous system 

generates the proper activation signals to effect controlled movements. Among the factors which 

determine these control signals are, the intended movement trajectory, the intended sensitivity to 

perturbations during the movement, and the dynamics and history of the muscles and limb. This 

paper focuses on nonlinear dynamic features of the generation of muscle force which are relevant 

to the control of fast movement. The eventual goal is the incorporation of more accurate activation 

models in studies of human movement such as Hannaford and Stark [1985], [1987], Hannaford, 

Kim, Lee, and Stark [1986], and Hannaford [1990]. 

Many aspects of the control of muscles are dynamically complicated and non-linear. In 

generation of torques about a joint, the CNS can make use of a muscle through two mechanisms, 

recruitment of a proportion of the motor units in the muscle, and modulation of the force generated 

by each motor unit. Within a given motor unit, the nervous system must regulate the activation of 

muscle force through pulse rate coding of action potentials delivered to the neuro-muscular 
junction. The nature of this coding and the constraints it puts on the neural control methods depend 
in turn on the dynamics of the activation response to action potential sequences. 

Experimentalists have addressed this problem in several muscles in the cat by artificially 
stimulating the motor neuron axon to deliver action potentials to the motor unit (Burke eL at. 

[1970], Gurfinkel and Levik [1974]). It is assumed that the regenerative, all-or-none properties of 

the axon (Hodgkin & Huxley [1952]) cause the action potentials received by the motor unit to be 

indistinguishable from those arising naturally from the motoneuron soma itself. Thus the only free 

variables in this stimulation experiment are the arrival times of the action potentials, in particular, 

their relative interarrival times. The dependent variable is the isometric force generated by the 
motor unit 

The theory of linear systems enables the analyst to predict the response of a linear, time- 
invariant, (LIT) system to any series of impulses from the response of the system to a single 

impulse. Unfortunately for this simple method of analysis, muscle is not a LIT system. In particular, 
motor units do not obey the principle of superposition - that is that the response to the sum of two 
input sequences is not equal to the sum of the responses to the inputs separately. 

The experimental work has focused on a major non-linear property of the response to neural 

stimulation called the catch-like effect (Burke et. al. [1970], [1976]). In this effect, very brief 

stimulation at a high repetition rate (even for only one interval) can cause a substantial and long- 

lasting enhancement of the isometric tension generated by subsequent action potential inputs. The . 
catch-like effect is physiologically relevant in the control of fast movements because it occurs at 

the transient very high frequencies observed in the output of motoneurons in response to sudden 
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increases of depolarizing current (Baidissera, eL al. [1975]). 

Although extensive modeling has been done of the muscle activation processes related to the 

phenomena illustrated by these experiments (Lehman [1982], Zahalek [1990]) little attention has 

been given to the catch-like non-linearity. An earlier phasic-excitation-activation (PEXA) model 
of the complete motor unit (Hannaford [1990]), successfully replicated many aspects of catch-like 

non-linear enhancement of tension development, but the model was phenomenological and did not 
establish a direct analogy between its state variables and biological structure. 

This paper will present two new models of the muscle activation process which are more 
physiologically based than the corresponding portions of the PEXA model. The motor-neuron 

portion of the overall motor unit dynamics is not addressed here. The two models are based on 

storage and conduction and reaction rates of the critical ions for muscle activation, Ca2+ and 

Troponin. It will be assumed that muscle hypothetical tension (active state) is directly proportional 
to the amount of troponin which is doubly bound to Ca2+. The two new models differ in the level 

of detail and by the addition of a non-linear decomposition rate function of Ca2+
2Tn. The second 

model suggests the interpretation that the "enhancement" of tension actually represents a transition 
between stable equilibrium states in the reaction 2 Ca2+ + Tn <--> Ca2+

2Tn. 

Model I Description 

This model of muscle activation and deactivation is based on fundamental physiological 
concepts and neuro-muscular physiological experimental data. The concepts of physiology 

involved in the model are: 1) electro-physiology, 2) diffusion and active transport, 3) chemical 

reaction, and 4) biomechanics. Model structure comes from these principles as they relate to 

release and uptake of Ca2+ and reaction of Ca2+ with Troponin. The model parameters are 

estimated from experimental data or, where the data are incomplete, heuristically. Also, some level 
of approximation is needed in order to simplify the model. (For all definitions of symbols used 
below, please refer to Table. 1.) 

The principles of this model are: 
r 

Membrane electricity: The sarcolemma and T-tubule are modeled as electrical resistors and 
capacitors in parallel connection (Fig. La). The motoneuron action potential is approximately 

simplified to a current impulse which transmits from axon to sarcolemma and T-tubule and deposits 

charge on their capacitors. The depolarization of T-tubule (Vm') is modeled as a piecewise linear 
function of the charge with a threshold mth. 

Ca2+ diffusion and active transport: Ionic calcium is stored in the sarcoplasmic reticulum 



(S.R.) whüe muscle is resting. The transport of Ca2+ through S.R. membrane can be decomposed 

into outflow (from S.R. to sarcoplasm (S.R)) and inflow (from S.R to S.R.) (Fig.l.b). The inflow 

rate only depends on free Ca2+ concentration in the S.R But the outflow rate depends on both free 

Ca + concentration in the S.R. and depolarization of T-tubule <ym'). A charge deposited on the T- 

tubular membrane by a received action potential causes an increase in Ca2+ outflow conductivity 

for the time that it is stored by the S.R. membrane capacitance. Our model uses controlled current 

sources (indicated by diamonds with arrows) to represent ion transport processes (Fig.l.b) and two 

new elements (Fig.l.e) to represent chemical composition reactions, whose rate depends on the 

product of a forward rate constant and the concentration of available reactants, and decomposition 

reactions, whose rate depends on the product of a backward rate constant and the concentration of 
compounded reactants. 

Activation and deactivate of contraction: Ca2+ in S.R is thought to be the regulator of 

muscle contraction (Ebashi and Endo [1968], Aidley [1971], Gordon [1989]). Some evidence 

(Gordon [1989], Lehman [1982]) indicates that there are two calcium ions reacting with one 

receiver molecule, troponin, as the activator of contraction. This reaction is expressed in chemical 
equation as: 

2 Ca2+ + Tn -> Ca2+
2Tn. 

This may be separated into two steps: 

Ca2+ + Tn -> Ca2+Tn, 

Ca2+ + Ca2+Tn --> Ca2+
2Tn. 

Of course, both subreactions are reversible, and the equations can be rewritten as: 

knlf 
Ca2+ + Tn <--> Ca2+Tn, 

knlb 

Ca2+ + Ca2+Tn <--> Ca2+
2Tn., 

kn2b 

where knIfand ^represent the forward reacting rate constants, and knlb and kn2b, backward 
reacting rate constants (Fig.l.e). 

Muscle mechanics: After the activation (two Ca2+ compound with a troponin), a sequence of 

events: 1) thin filament activation, 2) cross-bridge attachment, and 3) net-force output, occurs, 

these steps are approximated by a mechanical system which consists of a tension generator, a 

parallel damper, and a serial elastic element (Fig.l.d) as they have been used in many previous 
models (Huxley [1957], Aidley [1971], Hannaford [1990]). 



Model I Equations 

When an axon action potential pulse transmits to the sarcolemma and T-tubule, the membrane 
potential (or charge, since here the capacitance is assumed to be constant) responds as a first-order 
low pass filter and an exponential decay results according to the time constant of the membrane 
resistor and capacitor. This first order differential equation can be written: 

^a    =-L--     l 
drm     C l'   R C qm (V mm 

One way that we will deal with the large number of parameters in this model is to use 

normalized values for the state variables and many parameters (Table. 1). Capacitance is 

normalized to dimensionless unit value, and resistance to units of time. Thus, each RC time 
constant is correctly represented in the model. 

This approach is well suited to represent the dynamic aspects of muscle activation as long as 
nonlinear elements (below) are carefully scaled to the normalized range. The model thus predicts 

linear and nonlinear dynamic effects, but looses absolute amplitude information found in earlier 
models (Hannaford [1990]). Absolute amplitude information can be added to the model through 
identification of capacitance and/or resistance values and rescaling of nonlinear elements. 

Applying the normalization to Equ. 1 by letting Cn=l, we have: 

d.. 
Jt

Vm = li-kiVm (La) 

The conductivity of outflow Ca2+ through the S.R. membrane is modeled as voltage-dependent 

channel regulated by T-tubule potential. The voltage dependence is a piecewise linear relation: 

Vm   = (Vm-™th)u(Vm-mth) (2) 

in which conductivity increases linearly with potential above a specific threshold (Aidley [1971]). 

lf = W (3) 
where u(Vm-mth) is a unit step function of Vm with a threshold (offset) mth. For example, for a short 

duration after an input pulse, the membrane potential will be greater than the threshold, which turns 
on the outflow of Ca2+ and increases the Ca2+ concentration in the S.P.. 

In the opposite direction, the inflow rate of Ca2+is: 

h = kbmi (4) 

At the same time, there is a net bidirectional reaction of Ca2+ in the S.R. between bound condition 



and ionic condition, 

is = ks(mo-m2> (5) 

driven by disequilibrium between bound and free states of Ca2+ in the S.R.. 

In the S.R. troponin compounds with Ca2+. The forward and backward reaction rates for these 
steps are: 

'«1/ = **i/*2"o (6) 

'«16  = knlbnl (7) 

W = kn2fm2n\ (8) 

[nlb  = kn2bn2 (9) 

Up to this point, each node in the modeling circuit has a first order differential equation, which 
can be expressed as: 

dm0 
Co~dT = ~ls (10) 

df = '^7^ 

dm2 
Cl~dT   =  if~ib-inlf+inlb-in2f+in2b (12) 

dn0 
C»~dT   = -'nlf+inlb (13) 

dnl 
Cn~dF  = lnlf~i

n\b-
in2f+in2b (14) 

Cn~^J   = in2f~in2b (15) 

and by conservation of troponin (Equ.13, 14, and 15), 

"2 = ntotal-no~ni (15.a) 

The muscle activation (hypothesis tension) is simply assumed to be proportional to [Ca2+
2Tn] 

with a normalized constant of 1. 

ht = n2   ~ (16) 

As a result, the dynamics for muscle mechanics is: 

dm^ 
Ci-^n- = is-if+ib (ID 



ht = B(^)+K(x) (17) 

We have initially linearized the muscle mechanics by assuming: 

B{x)   = bx (18.a) 

K(x)   = kx (18-b) 

which gives 

ht = b-jt+kx (17.a) 

After that, the output force, kx, is obtained. 

Simulation Results of Model I 

1. Response to different frequencies of pulse train inputs -- 

In the first simulation experiment, model I was driven by input pulse trains of different pulse 
rates. A similar muscle model simulation has been done by Lehman for extraocular muscle 
(Fig.1.18, Lehman [1982]). Four different frequency inputs (100,250, 500, and 600 Hz) were used 

in that simulation. Because of the high speed of extraocular muscle, these input frequencies are too 

high for type S muscle fibers of the cat gastrocnemius (on the average), so, we used a lower 

frequency set of inputs, 8,14,20, and 25 Hz (Fig.2) to compare with Lehman's result. (Originally, 

the parameters of this model were found to best fit the experimental results of Burke et. al. [1970]. 
This will be discussed later. It is obvious that the muscles investigated by Burke were much slower 
than the extraocular muscle.) 

When model I was driven by 8, 14,20, and 25 Hz pulse trains (Fig.2), the result is very similar 
to Lehman's allowing for the different time scales. Typically, For each pulse input, the force 

response first raises up till a maximum and then falls down. If the frequency of input train is low 

enough, the force will tend to return to zero after it reached a maximum value for each input pulse. 

If the frequency goes up, the falling time will be shortened, and the amount of falling will be 

smaller. Thus the force keeps increasing until it saturates. If the pulse frequency is sufficient to 
reach saturation, the higher the frequency is, the shorter the saturation time is. 

2. Response to three different patterns of pulse train inputs -- 

In the second simulation, three trains of input patterns were used (the same as Burke's 



experiment, [1970]). Each includes 22 stimuli at a basic rate of 12.2 pulses per second (pps) (pulses 

interval, 82 ms). In each train, one or two stimulus intervals were altered (Fig.3). The force 

response traces are labeled "a", "b", and "c" separately (Fig.4), and the corresponding pulse 
sequences are: 

"a". Starts with a pulse interval shorter than that in the basic train (10 ms). (The two pulses with 
a small interval are called a "doublet", and the second pulse only is called the "early pulse".) 

"b". Starts with a 10 ms interval doublet (as in "a"), and the 8th pulse follows the previous pulse 

with an interval longer than that in the basic train (117 ms). (called the "delayed pulse") 

"c". Starts without a doublet, and the 8th pulse follows the seventh pulse with an interval 

shorter than that in the basic train but longer than that in "a" and "b" doublet (26 ms). 

Unlike the experimental data, the simulation results (Fig.4.d) do not show any prolonged 

enhancement. The responses corresponding to three different input patterns all approach to the 
same level at steady state. 

Why We Need a New Model 

Some enhancement was observed in the previous model because of the nonlinearity of the 

model, however, unlike the experimental data (Burke et al. [1970]), the enhancement did not last. 

In retrospect it may be obvious that the first model can not explain the effect of enhancement 

lasting. In the first model, all rate coefficients are constant, therefore the force response tends to 

reach the same stable point if the steady state input frequency in each sequence is the same.The 
stable point is monotonically related to the input rate. Changing the time constants can not solve 

this problem, but will cause other problems such as slowing down of the increase and decrease of 

force response, etc. Since in this model there is only one stable response for each steady state input, 

the enhancement can never be lasting, no matter what transient input sequence is applied. This 

means that for the enhancement to prolong, there must be more than one stable point for a range of 

steady state inputs, and the transient input sequence will decide which stable point is approached. 

Based on this idea, model H involves nonconstant reacting rate coefficients in order to get two 
stable points. 

Model II Description 

Model n, like model I, can be separated into 4 stages. 



Stage 1, membrane electricity (Fig.5.a), and stage 4, muscle mechanics (Fig.5.d), are exactly 
the same as model I. 

Stage 2, Ca2+ diffusion and active transport (Fig.5.b), is almost the same but ignores the 

factor of bound Ca2+ in S.R., since this seems not to effect the lasting of enhancement. Bound Ca2+ 

in S.R. seems to play a role in tetanic contraction and Ca2+ recovery (Aimers [1989]). It may be 
considered in further work, but not here. 

Stage 3, activation and deactivation of contraction (Fig.5.c), is quite different from model I. 

The two-step reaction of troponin and Ca2+ is replaced by a simple concentration-equivalent circuit 
which consists of two dependent current sources. One is the composition rate of Ca2+

2Tn, driven 

by Ca + concentration in S.P. The form of this rate dependence is a "square-saturation function" 

(Fig.6.a, this will be described later). The other is the decomposition rate of Ca2+
2Tn, driven by 

Ca +
2Tn concentration. The form of this rate dependence is approximated by a cubic spline 

polynomial (Fig.6.b and c) with a local maximum at Pmax (NhK{) and a local minimum at Pmin 

(N2)K2). 

An equilibrium in Ca2+
2Tn will be reached when the average composition rate equals the 

average decomposition rate. Since the composition rate is assumed to be independent of Ca2+
2Tn, 

it can be visualized as a horizontal line in Fig.6.c at a given rate. Each intersection of this line with 

the decomposition rate curve (Fig.6.b and c) is an equilibrium point. However, only those 
intersections where the slope of the decomposition curve is positive are stable since at these points 

a small change in Ca2+
2Tn concentration will be corrected by the resulting change in 

decomposition rate. Thus, for composition rates, K, between K2 and Klf the decomposition rate 

function has three equilibria: 2 stable ones, SP! (N4,K) and SP2 (N6,K), and a unstable one, Prit 

(N5,K). 

When a regular impulse train arrives at the T-tubule, if 1), the firing rate is lower than a 

threshold frequency, the average composition rate of Ca2+
2Tn in each pulse duration will be less 

than die average decomposition rate iq (Fig.ö.c) at [Ca2+
2Tn] = Nh Thus the stable point for 

[Ca +
2Tn] is at the left side of N2. If 2), the firing rate is greater than the threshold, the average 

composition rate will be greater than the average decomposition rate K{ at [Ca2+
2Tn] = N3. Thus 

the stable point for Ca2+
2Tn is at the right side of N3. 

On the other hand, when 3) an impulse train contains a doublet (one impulse duration much 

shorter than the others) and the main firing rate is just a little lower than the threshold, the average 

compounding rate K for the main firing rate will be less than the average decomposition rate K{ 

but greater than K2. Before the doublet, the force response will be all the same as in 1), on the left 

side of Nlf at SP! (N4,K). But at the doublet, it may be pushed across the local maximum Pmax 

(NhK{), further more, across the critical point P^ (N5,K) (in the view of short-term average). 



After that, it will reach another stable point SP2 (N6,K), between N2 and N3. This keeps Ca2+
2Tn 

concentration at a new level greater than the one without doublet input. 

Furthermore, consider that the input is similar to 3) but after the doublet there is one delayed 

impulse (duration longer than the others). Before the delayed impulse, the response will be all the 

same as in 3). And if 4) the delay is not too long, the average composition rate will not decline 

below K2 and after the delayed impulse the response may still be kept in the right side of Pcrt, and 

gradually comes back to SP2. But if the delay is long enough, after the delayed impulse, it may be 

pulled back to the left of Pcrt (in the view of short-term average), and returns to the lower stable 
level SPh 

Model II Equations 

For all definitions of symbols used below, please refer to Table. 1 and Table.2. 

In this model, the differential equation of sarcolemma and T-tubule membrane potential (or 
charge) is exactly as in model I: 

Jt
Vm = ii-kiVm (La) 

The voltage dependence of the Ca2+inflow through S.R. membrane and the Ca2+ outflow are 
also the same: 

Vm   =  iVm-mth)u(Vm-mlk) (2) 

V = ¥V * 0) 
*b = kbm2 (4) 

However, the composition rate of Ca   2Tn is now modeled as: 

V = knF{m2) (19) 

where 

™2 

F{m2) = ~T^ <2°) m2+M 

is the normalized composition rate function. Similarly, the decomposition rate of Ca2+
2Tn: 

lnb = knG(n) (21) 
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where 

G{n)   = Spline{X, Y){n) (22) 

and »SplweQLXMT is a cubic Spline polynomial, determined by a set of predetermined points 
(Table.3), with respect to variable n. 

As a result, the dynamic equations are: 

dm, 
C          - Cl dt   ' = -

if+ib 

drrir. 
C C2  dt 

= irib 

~ dn 
n~di ~ 

inf~lnb 

(23) 

(24) 

(25) 

The muscle mechanics are the same as model I but n2 is replaced by n: 

ht = n (26) 

TtJ ™w (17) 
dx 

ht = B(%) +K(X) 

or 

*' = *§ + ** (17.a) 

Simulation Results of Model II 

1. Response to different frequencies of pulse train inputs -- 

Model E was driven by constant frequency pulse trains using the same frequencies as used in 
model I (Fig.7). In general, the force responses are very similar to the results of both model I and 

Lehman's model [1982]. But, looking at the data in more detail, there is a difference in the low 

frequency components of the force response. In model I, the response is like a simple exponential 

saturation behavior, its rate of increase decreases as force rises; in model H, it isn't so simple, the 

rate of increase seems to decrease, increase, and decrease again as force rises (especially for 
frequency = 14 Hz). This is also true of Lehman's model [1982] (frequency = 500 Hz). 

11 



2. Response to three different patterns of pulse train inputs -- 

In contrast to model I, the responses of model II (Fig.8) to the three pulse trains "a", "b", and 

"c" show significant enhancement of tension for trains "a", and "b" due to their initial doublets, 

and no crossing of the force traces. The initial effect of the doublet is greater than the increase 

caused by the later short interval (of longer duration) in train "c". These features are all consistent 
with the experimental data (Burke et. al. [1970]). 

3. Response to input trains with or without doublet -- 

These simulations (Fig.9) are similar to the previous ones, but instead of three different 

patterns, only two pulse trains are used as inputs: one with a 10 ms doublet at the beginning and 

the other without. Several frequencies of the basic train were selected (1, 8, 12, 20 Hz) based on 
earlier experimental data (Burke et. al. [1970]). 

The simulations show significant early enhancement of tension in response to the trains 
containing the doublet for all frequencies tested. The enhancement is maintained for a duration 

which varies with the basic pulse train rate: i.e. about 0.8 second at 8 Hz, greater than 1.6 second 
at 12 Hz, and about 0.4 second at 20 Hz. 

Prediction of Model II 

As described in "Model II Description" section, two phenomena are expected: 

1. If originally the force response was around the higher force stable point, and an input pulse 
interval is increased more than a certain amount, xh this will result in pulling the force response 
down to the lower force stable point. 

2. If originally the force response was around the lower force stable point, and an input pulse 
interval is shorter than a certain amount, x2, this will result in pushing the force response up to the 

higher force stable point. If the interval is shortened, but still longer than x2, the force will 
temporarily increase but go back to the lower force stable point. 

Model II was driven by 82 ms pulse trains with a doublet at the beginning resulting in steady 
state force at the high equilibrium point, each containing an interval delayed by 35, 50, 75, 100, 

and 200 ms (Fig.lO.a), and by pulse trains without a doublet at the beginning resulting in steady 

state force at the low equilibrium point, each containing an interval reduced to 26, 30, 37,47, and 
67 ms (Fig.lO.b). 

From the high equilibrium point (SP2), intervals delayed by more than 75 ms resulted in 
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changing the system to S?l (Fig.lO.a). Thus the value of z{ should be somewhere between 75 ms 

and 100 ms. From the low equilibrium point (SP^, intervals shorter than 37 ms resulted in 

changing the system to SP2 (Fig.lO.b). Thus the estimated value of x2 should be between 30 ms 
and 37 ms. 

Discussion 

We have presented two new models of muscle activation, expressed as circuit diagrams, 
mathematical equations, and computer simulations. 

Models 

Model I, although not as detailed as that of Lehman [1982], contains most of the reactions 
thought to be involved in binding of Ca2+ to troponin for the activation of muscle force generators. 

These include S.R. membrane electrical properties, bound and free Ca2+ in the S.R., Ca2+ transport 
across the S.R. membrane, and the two stage formation of Ca2+

2Tn. 

Model I was good at reproduction of the development and relaxation of tension (Fig.2), but 

although it showed some enhancement of tension, it could not reproduce the qualitative features of 
the responses to the doublet/gap stimulation paradigms found by Burke et. al. [1970] (Fig.4 d) In 
particular, the enhancement due to the initial doublet (traces "a", "b") was insufficient to prevent 
a later doublet (trace "c") from causing the force trajectories to cross. 

Although it might be possible to prove that significant enhancement is possible with the 

structure of model I due to its significant nonlinearities, we could not find a set of parameter values 
which could produce this behavior and such a proof was not obvious. 

A second model was described which introduced at the same time a simplification and an 
elaboration of Model I. The main simplification was to lump the two-step reaction of the formation 

of Ca 2Tn into a single step characterized by composition and decomposition rate functions and 
to lump the two states of Ca2+ in the S.R. into one. The elaboration was the introduction of two 

nonlinear functions describing Ca2+
2Tn composition as a function of free Ca2+ concentration in 

the S.P. (m2), and Ca +
2Tn decomposition as a function of Ca2+

2Tn concentration (n). 

The composition rate function for Ca2+
2Tn is a second order rational polynomial with 

saturation indicating a maximum composition rate. This curve (similar to the logistic curve) 

illustrates a fundamental nonlinear dynamic relationship in which rate of change depends on state, 

but the state is limited by a maximum extent (such as a "limit to growth" in population systems) 

The composition rate function used here (Equ.20) is similar to the "activation factor" used by 
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Zahalek [1990] to couple Ca2+ to cross-bridge dynamics. While the composition rate function is in 
a slightly different place in the reaction, it may produce a qualitatively similar effect. 

The second non-linear function (described by anchor points and a cubic spline) which describes 

the rate of decomposition of Ca2+
2Tn, had a region of negative slope which caused the existence 

of two stable points in Ca2+
2Tn concentration for a given steady state input frequency. The 

existence of two stable points only occurs within a range of Ca2+
2Tn concentrations. 

Within this range, the combined effect of these two curves is to give two possible steady state 

force responses for a given input rate, a "normal" response at the lower equilibrium point, and an 

"enhanced" response at the higher point. A single interval, if sufficiently shortened relative to the 

basic pulse rate, can push the system from the normal to the enhanced response, and a single 

interval sufficiently lengthened relative to the basic rate can push the system from the enhanced to 
the normal response. 

A possible source of the nonlinear composition and decomposition rate functions may be the 
effect of interaction between Ca2+ mobility and polarization induced by intercellular proteins (Ling 
[1991]). 

Simulations 

In response to the basic pulse train inputs (Fig.7), model II gave traces of force development 

which were similar in shape at first glance to those of model I. The saturation level was higher, and 

it was reached faster for the high frequency inputs. However, an interesting qualitative effect 

appears when the 14 Hz trace is viewed along its direction, near the plane of the page. The rate of 

increase can be seen to oscillate slightly. This is clearly due to the system passing through the non- 

monotonicity of Ca2+
2Tn decomposition curve (Fig.6.b and c) as tension is increased. Although 

this curve is not explicitly represented in Lehman's model, the osculations in force development 

can also be observed in his simulation (Fig. 1.18, Lehman [ 1982]). He did not perform simulations 

to demonstrate catch-like enhancement in his model, but this similarity suggests that it should be 
observed. 

The doublet/delay experiment (traces "a", "b", "c", Fig.3) was devised by Burke et al. [1970] 

to elucidate the nonlinear nature of the catch-like property and its decay. The different responses 

to these three input signals clearly distinguished the two models (Fig.4 vs. Fig.8). In particular, the 

declining level of average force seen in the doublet responses of model II (traces "a" and "b", 
Fig.8.c) was not observed in the output of Model I to the same stimulus. This was due to the lack 

of a strong doublet effect in Model I. In model n, the initial doublet pushed the system past the 

"enhanced" stable point, SP2, and the extended interval (trace "b", Fig.8.c) caused force level to 
temporarily decline, but was not extended by enough extra time to make the system drop to the 
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"normal" stable point, SPj. 

The nonlinear decomposition rate function was seen to result in two stable operating points, but 
only if the steady state composition rate was sufficient to generate a Ca2+

2Tn composition rate 

within the interval in which a horizontal line will intersect the decomposition rate curve at three 

points. This suggests that significant enhancement should only be seen for basic pulse train rates 
which are intermediate between very low stimulation and very high stimulation. 

The dual pulse step experiments (Fig.9.a-d) were used by Burke et. al. [1976] to quantify this 

behavior in the living muscle. Burke's results showed enhancement for each of the basic pulse train 

rates, but the duration of the enhancement was variable. Our simulations using model II (Fig.9.a- 

c) show the same behavior which can be interpreted in terms of the dual stable state hypothesis of 

model n. For all cases, the initial doublet is sufficient to push the system past critical point P^. 

However, for the pulse rates below about 12 Hz, the steady state composition rate is below the level 
at which two stable points exist, K2, the system is forced to a single point, and the traces converge 

in less than 1 second (Fig.9.a, and b) for intermediate intervals (for example 12 Hz, Fig.9.c) the 

composition rate is between the critical values, K2 and Klt and the enhancement is long lasting. 

For the highest pulse rate, (20 Hz, Fig.9.d) the basic pulse rate is sufficient to drive the system 

above Klf and thus there is a single stable point to which both traces converge. This behavior is 
consistent with the experimental data (Figure 5, Burke et. al. [1976]). 

A significant issue is whether or not the enhancement ever disappears if the input is continued 
at an appropriate rate. It is interesting to note that the stimulus trains of Burke et. al. [1976] lasted 

for about 1.6 seconds and that for intermediate frequencies 9.8 -15 Hz, the traces do not converge. 

Additional experimentation is needed to determine if there are indeed two permanent stable states, 

or whether they eventually converge. Our model suggests that the effect is permanent baring 
effects due to fatigue etc. 

Predictions 

The dual stable point idea of model H prompted us to generalize the abc experimental input 
stimuli of the Burke experiment to a larger number of doublet intervals and increased gap intervals, 

and to start the system from both the "enhanced" state (Fig. lO.a) and the "normal" state (Fig. lO.b). 

These simulations suggest that further experimental work can determine the stable points SP! and 
SP2, and the additional pulse delay (T^ which will cause the transition from SP! to SP2. Our model, 

which is tuned to fit the Burke data, suggests that in the slow motor units of cat medial 

gastrocnemius muscle, this interval should be between 75 and 100 ms. if the basic input rate is 12 2 
Hz. 

The other suggested experiment is to identify a reduced interval length which will cause the 
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system to transition from the "normal" (SPj) to the "enhanced" (SP2) stable point. Our prediction 
is that this interval will be between 37 and 30 ms in this muscle for the 12.2 Hz basic rate. 

Limitations and Future Work 

Model II developed a satisfactory explanation for the catch-like property of muscle, but at the 

cost of the substitution of abstract composition and decomposition functions for detailed chemical 

reaction modeling. Lehman's model [1982] is a quite detailed model which includes additional 

steps involved in the composition and decomposition of Ca2+
2Tn. Model II contains three state 

variables and two non-linear composition and decomposition functions. The similarity between the 

non-uniform force development rate in our model and Lehman's is a suggestion that Lehman's 
model may contain this phenomenon. 

A future step will be to test the model in non-isometric experiments. One significant issue will 

be the extent to which muscle mechanical variables affect activation level. The existence of such 

a feedback loop, which is not present in our models, has been suggested by Zahalek's tight 
coupling hypothesis [1990], and can be observed in other systems such as insect flight muscle 

(Pringle [1949]). Whether and how such mechanical feedback loops may effect the stable states of 
contraction remains to be determined. 
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Legend 

Fig.l 

Equivalent circuits of first model of muscle activation (model I): a) Muscle membrane 

electricity, b) Ca + diffusion and active transport between sarcoplasmic reticulum (S.R.) and 

sarcoplasm (S.P.). c) Activation and deactivation. The node voltage is equivalent to ionic or 

molecular concentration; branch current to ion flow; capacitance to equivalent ionic or molecular 

distribution volume; conductance to diffusive Constance; and dependent current source to active 

transport, e) Two defined symbols, chemical composition reaction and decomposition reaction, are 

used in c), which are similar to dependent current sources but with dependence on the product of 

rate constants and the concentration of the reactants (the inputs), d) Muscle mechanics. The output 
tension of the tension generator is modeled as proportional to the output of c). 

Fig.2 

Model I output force in response to four fixed frequencies of pulse train inputs. 

Fig.3 

Three patterns of pulse trains used as simulation inputs. The main frequency of all three 

patterns is 12.2 Hz, or pulses per second (pps) (duration 82 ms). Sequence a (symbol x) has a 10 

ms doublet in the beginning. Sequence b (symbol *) has a 10 ms doublet in the beginning but a 35 

ms delayed pulse (duration is 117 ms) after the 7th. pulse. Sequence c (symbol o) has a 26 ms 
doublet at the 7th pulse. 

Fig.4 

Response of model I for the three different input patterns of Fig.3: solid line, sequence "a"; 
dashed line, sequence "b"; dotted line, sequence "c". a) Ca2+ concentration, b) Ca2+Tn 

concentration, c) Ca +
2Tn concentration. The hypothetical tension is proposed to be proportional 

to [Ca +
2Tn]. d) Output force (isometric). All three traces approach the same steady state as long 

as the frequencies of the main pulse trains are the same. There is no way to get a prolonged 
enhancement with model I, no matter how the model parameters change. 

Fig.5 

Equivalent circuits of model II: a) and d), membrane electricity and muscle mechanics, are 
exactly the same as model I. b) Ca2+ diffusion and active transport is similar to model I but without 

Q), mQ, and k,.. c) activation and deactivation. The composition rate and decomposition rate are 

modeled as two nonlinear dependent current sources respectively without considering of the 
complexity of chemical reaction. 
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Fig.6 

a) Composition rate as a function of [Ca2+]. b) Decomposition rate as a function of [Ca2+
2Tn]. 

c) The detail of decomposition curve as described in text 

Fig.7 

Model H output force in response to pulse train inputs of four fixed frequencies. View the 

response 14 Hz from the direction of the eye's icon to see the change of force increase rate due to 
added nonlinear element (see text for detail). 

Fig.8 

Response of model II for the three different input patterns: solid line, sequence "a"; dashed line, 
sequence "b"; dotted line, sequence "c". a) Ca2+ concentration, b) Hypothetical tension, c) Output 
force. This result is very similar to the experimental results made by Burke et al., 1970. Prolonged 
enhancement is obvious. 

Fig.9 

Response of model H for doublet experiments: a) 1 pps, b) 8 pps, c) 12 pps, and d) 20 pps. 
These results are also very similar to the experimental results made by Burke et. al., 1970. 

Fig.10 

a) Output force for prediction 1. Input pattern is similar to sequence b in Fig.3, but with five 
different delay times. If the pulse is delayed by more than a certain amount (here, 75 ms), the output 

force will be pulled back to low tension stable region, b) Output force for prediction 2. Input pattern 

is similar to sequence c in Fig.3, but with, five different doublet intervals. If the doublet interval is 

wider than a certain amount (here, 30 ms), the output force will not be pushed to its high tension 
stable region. 
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Symbol definitions of model I 

1. Membrane electricity: 

Name 

*OI 

'm 

R m 

<lm 

m 

V  ' r m 

mth 

*/ 

Type* 

SV 

SV 

CV 

Valuef 

lorO 

0.01 

0.4 

100 

Unit* 

1/sec 

sec 

1/sec 

Description 

Unit impulse, the current of action potential 

sarcolemma and T-tubular capacitance 

1 
sarcolemma and T-tubular resistance 

sarcolemma and T-tubular charge 

sarcolemma and T-tubular potential 

Ca + channel voltage dependence 

S.R. membrane threshold for outflow Ca2+ 

reciprocal of RmC, mr^m 

a+ 2. Ca    diffusion and active transport: 

Name Type Value Unit Description                               J 
mtotal C 1000 - total Ca2+ of S.R. under resting 

m0 SV - - bound Ca2t concentration in S.R. 

m1 SV - - free Ca2+ concentration in S.R. 

m2 SV - - free Ca2+ concentration in S.P. 

Co c 0.9 - bound Ca2+ equivalent volume in S.R. 

Ci c 0.1 - free Ca2+ equivalent volume in S.R. 

c2 c 1.0 - free Ca    equivalent volume in S.P. 

h CV - 1/sec bound-free transient rate of Ca2+ in S.R. 

if CV - 1/sec outflow rate of Ca2+ 

*b CV - 1/sec inflow rate of Ca2+ 

ks c 0.5 1/sec is rate constant 

kf c 50 1/sec ly-rate constant 

h c 450 1/sec if, rate constant 

Table.1-1 
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3. Activation and deactivation of contraction: 

Name 

n total 
n0 

"i 

n2 

lnlf 
lnlb 
ln2f 
ln2b 
cnlf 
cnlb 
Cn2f 
in2b 

Type 

SV 

SV 

SV 

CV 

CV 

CV 

CV 

Value 

10 

50 

100 

200 

Unit 

1/sec 

1/sec 

1/sec 

1/sec 

1/sec 

1/sec 

1/sec 

1/sec 

Description 

total Tn 

Tn concentration 

Ca2+Tn concentration 
,2+ Ca   2Tn concentration 

equivalent volume of total troponin 

forward reacting rate of step 1 

backward reacting rate of step 1 

forward reacting rate of step 2 

backward reacting rate of step 2 

lnjf rate constant [nil 
lnlb rate constant 

injfxzie. constant ln2f 
ln2b rate constant 

4. Muscle mechanics: 

Name 

ht 

Type 

CV 

O 

Value 

0.15 

Unit 

sec 

Description 

equivalent muscle serial elasticity 

equivalent muscle parallel damping 

muscle hypothetical tension 

muscle decremental distance 

Note:       * The types of symbols: 
I: input variable 
SV: state variable 
CV: calculating variable 
O: output variable 
C: constant 

t$ All values and units used for model simulation 
are normalized. 

Table.1-2 
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Symbol definitions of model II 

1. Membrane electricity: 

(same as model I, but some values of constants are changed as following) 

Name 

R m 

*/ 

Type Value 

0.00909 

110 

Unit 

sec 

1/sec 

Description 

sarcolemma and T-tubular resistance 

reciprocal of RmC. m^m 

,2+ 
2. Ca + diffusion and active transport: 

(similar to model I without mtotah mQ, C0, is, and *„ also, some values of constants are 
changed as following) 

Name 

mj 

Kf 

Type Value 

1000 

Unit 

10 

90 

1/sec 

1/sec 

Description 
,2+ Ca    concentration in S.R. 

,2+ free Ca    equivalent volume in S.R. 
,2+ free Ca + equivalent volume in S.V. 

ifTate constant 

iff rate constant 

Table.2-1 
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3. Activation and deactivation of contraction: 

Name 

M 

IsL 
lnb 

Type 

SV 

C 

C 

CV 

CV 

C 

Value Unit 

500 

52 

1/sec 

1/sec 

1/sec 

Description 
,2+ 

Ca   2Tn concentration 

equivalent volume of total troponin 

[Ca2+]2athalf Ca2+
2Tn-composition- rate 

,2+ 
Ca^Tn compounding rate 

,2+ 
Ca   2Tn decomposing rate 

F(m2) and G(n) modified ratio 

4. Muscle mechanics: 

(same as model I, but constant b is changed as following) 

Name Type Value 

0.04 

Unit 

sec 
Description 

equivalent muscle parallel damping 

Table.2-2 
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8 control points of spline polynomial 

X Y 

0.00 0.000 

0.10 0.030 

0.20 0.043 

0.30 0.043 

0.40 0.041 

0.50 0.042 

0.60 0.048 

1  10°  1 1.000 

X : Normalized Ca2+
2Tn concentration 

Y : Normalized Ca   2Tn decomposition rate 

Table.3 
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